988 resultados para vinylidene fluoride


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new solid composite polymer electrolyte was reported by incorporating Azino-bis-(3-ethyl benzo thiazoline-6-sulphonate) ion [ABTS] as dopant in poly(vinylidene flouride) along with redox couple (1-/13-). Under certain conditions, the electrolyte composition forms brush like nano-rods while it is doped with Azino-bis-(3-ethly) benzo thiazoline-6-sulphonate) ion [ABTS], a pi-electron donor. The polymer electrolyte forms nanoscale interpenetrating network with the crystalline order of the polymer electrolyte that seems to be a desirable architecture for the active layer of the photoelectrochemical cell. With this new polymer electrolyte, dye-sensitized solar cell was fabricated using N3 dye absorbed over Ti02- nonoparticles (photoanode) and conducting carbon cement coated on the conducting press (FTO, photocathode). This polymer composite has been successfully used as a promising candidate as solid polymer electrolyte in nanocrystalline dye-sensitized solar cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(vinylidene fluoride) and copolymers of vinylidene fluoride with hexafluoropropylene, trifluoroethylene and chlorotrifluoroethylene have been exposed to gamma irradiation in vacuum, up to doses of 1MGy under identical conditions, to obtain a ranking of radiation sensitivities. Changes in the tensile properties, crystalline melting points,heats of fusion, gel contents and solvent uptake factors were used as the defining parameters. The initial degree of crystallinity and film processing had the greatest influence on relative radiation damage, although the cross-linked network features were almost identical in their solvent swelling characteristics, regardless of the comonomer composition or content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smart materials, such as thin-film piezoelectric polymers, are interesting for potential applications on Gossamer spacecraft. This investigation aims to predict the performance and long-term stability of the piezoelectric properties of poly(vinylidene fluoride) (PVDF) and its copolymers under conditions simulating the low-Earthorbit environment. To examine the effects of temperature on the piezoelectric properties of PVDF, poly(vinylidenefluoride-co-trifluoroethylene), and poly(vinylidenefluoride-cohexafluoropropylene), the d33 piezoelectric coefficients were measured up to 160 8C, and the electric displacement/electric field (D–E) hysteresis loops were measured from �80 to þ110 8C. The room-temperature d33 coefficient of PVDF homopolymer films, annealed at 50, 80, and 125 8C, dropped rapidly within a few days of thermal exposure and then remained unchanged. In contrast, the TrFE copolymer exhibited greater thermal stability than the homopolymer, with d33 remaining almost unchanged up to 125 8C. The HFP copolymer exhibited poor retention of d33 at temperatures above 80 8C. In situ D–E loop measurements from �80 to þ110 8C showed that the remanent polarization of the TrFE copolymer was more stable than that of the PVDF homopolymer. D–E hysteresis loop and d33 results were also compared with the deflection of the PVDF homopolymer and TrFE copolymer bimorphs tested over a wide temperature range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of simulated low earth orbit conditions on vinylidene-fluoride based thin-film piezoelectrics for use in lightweight, large surface area spacecraft such as telescope mirrors and antennae is presented. The environmental factors considered as having the greatest potential to cause damage are temperature, atomic oxygen and vacuum UV radiation. Using the piezoelectric strain coefficients and bimorph deflection measurements the piezoelectric performance over the temperature range -100 to +150°C was studied. The effects of simultaneous AO/VUV exposure were also examined and films characterized by their piezoelectric, surface, and thermal properties. Two fluorinated piezoelectric polymers, poly(vinylidene fluoride) and poly(vinylidene fluoride-co-trifluoroethylene), were adversely affected at elevated temperatures due to depoling caused by randomization of the dipole orientation, while AO/VUV contributed little to depoling but did cause significant surface erosion and, in the case of P(VDF-TrFE), bulk crosslinking. These results highlight the importance of materials selection for use in space environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Piezoelectric energy harvesters can be used to convert ambient energy into electrical energy and power small autonomous devices. In recent years, massive effort has been made to improve the energy harvesting ability in piezoelectric materials. In this study, reduced graphene oxide was added into poly(vinylidene fluoride) to fabricate the piezoelectric nanocomposite films. Open-circuit voltage and electrical power harvesting experiments showed remarkable enhancement in the piezoelectricity of the fabricated poly(vinylidene fluoride)/reduced graphene oxide nanocomposite, especially at an optimal reduced graphene oxide content of 0.05 wt%. Compared to pristine poly(vinylidene fluoride) films, the open-circuit voltage, the density of harvested power of alternating current, and direct current of the poly(vinylidene fluoride)/reduced graphene oxide nanocomposite films increased by 105%, 153%, and 233%, respectively, indicating a great potential for a broad range of applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the ferroelectric and pyroelectric properties of the composite films of lithium tantalate (LT) nanoparticle in poly(vinylidene fluoride) PVDF matrix at different volume fractions of LT (f(LT) = 0.047, 0.09 and 0.17). For an applied electric field of 150 kV cm(-1) the nonvolatile polarization of the composite was observed to increase from 0.014 mu C cm(-2) at f(LT) = 0 to 2.06 mu C cm(-2) at f(LT) = 0.17. For f(LT) = 0.17, the composite films exhibit a saturated ferroelectric hysteresis loop with a remanent polarization (2P(r) = 4.13 mu C cm(-2)). Compared with pure poled PVDF the composite films also showed a factor of about five enhancement in the pyroelectric coefficient at f(LT) = 0.17. When used in energy detection mode the pyroelectric voltage sensitivity of the composite films was found to increase from 3.93 to 18.5 VJ(-1) with an increase in f(LT) from 0.0 to 0.17.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility of obtaining relatively high dielectric constant polymer-ceramic composite by incorporating the giant dielectric constant material, CaCu3Ti4O12 (CCTO) in a Poly(vinylidene fluoride) (PVDF) polymer matrix by melt mixing and hot pressing process was demonstrated. The structure, morphology and dielectric properties of the composites were characterized using X-ray diffraction, Thermal analysis. scanning electron microscope, and impedance analyzer. The effective dielectric constant a(epsilon(eff)) of the composite increased with increase in the volume fraction of CCTO at all the frequencies(100 Hz-1 MHz) under study. The dielectric loss did not show any variation up to 40% loading of CCTO, but showed an increasing trend beyond 40%. The room temperature dielectric constant as high as 95 at 100 Hz has been realized for the composite with 55 vol.% of CCTO, which has increased to about 190 at 150 degrees C. Theoretical models like Maxwell's, Clausius-Mossotti, Effective medium theory, logarithmic law and Yamada were employed to rationalize the dielectric behaviour of the composite and discussed. (C) 2010 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gamma-phase poly (vinylidene fluoride) (PVDF) films are usually prepared using dimethyl sulfoxide (DMSO) solvent, regardless of preparation temperature. Here we report the crystallization of both alpha and gamma-phase PVDF films by varying preparation temperature using DMSO solvent. The gamma-phase PVDF films were annealed at 70, 90, 110, 130 and 160 degrees C for five hours. The changes in the phase contents in the PVDF at different annealing conditions have been described. When thin films were annealed at 90 degrees C for 5 h, maximum percentage of beta-phase appears in PVDF thin films. The gamma-phase PVDF films completely converted to alpha-phase when they were annealed at 160 degrees C for 5 h. From X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), differential scanning calorimetry (DSC) and Raman studies, it is confirmed that the PVDF thin films, cast from solution and annealed at 90 degrees C for 5 h, have maximum percentage of beta-phase. The beta-phase PVDF shows a remnant polarization of 4.9 mu C/cm(2) at 1400 kV/cm at 1 Hz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural dynamics, dielectric permittivity and ferroelectric properties in poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) (PVDF/PMMA) blends with respect to crystalline morphology was systematically investigated in presence of amine functionalized MWNTs (NH2-MWNTs) using dielectric spectroscopy. The crystalline morphology and the crystallization driven demixing in the blends was assessed by light microscopy (LM), wide angle X-ray diffraction (WXRD) and, in situ, by shear rheology. The crystal nucleation activity of PVDF was greatly induced by NH2-MWNTs, which also showed two distinct structural relaxations in dielectric loss owing to mobility confinement of PVDF chains and smaller cooperative lengths. The presence of crystal-amorphous interphase was supported by the presence of interfacial polarization at lower frequencies in the dielectric loss spectra. On contrary, the control blends showed a single broad relaxation at higher frequency due to defective crystal nuclei. This was further supported by monitoring the dielectric relaxations during isothermal crystallization of PVDF in the blends. These observations were addressed with respect to the spherulite sizes which were observed to be larger in case of blends with NH2-MWNTs. Higher dielectric permittivity with minimal losses was also observed in blends with NH2-MWNTs as compared to neat PVDF. Polarization obtained using P-E (polarization-electric field) hysteresis loops was higher in case of blends with NH2-MWNTs in contrast to control blends and PVDF. These observations were corroborated with the charge trapped at the crystal-amorphous interphase and larger crystal sizes in the blends with NH2-MWNTs. The microstructure and localization of MWNTs were assessed using SEM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two unique materials were developed, like graphene oxide (GO) sheets covalently grafted on to barium titanate (BT) nanoparticles and cobalt nanowires (Co-NWs), to attenuate the electromagnetic (EM) radiations in poly(vinylidene fluoride) (PVDF)-based composites. The rationale behind using either a ferroelectric or a ferromagnetic material in combination with intrinsically conducting nanoparticles (multiwall carbon nanotubes, CNTs), is to induce both electrical and magnetic dipoles in the system. Two key properties, namely, enhanced dielectric constant and magnetic permeability, were determined. PVDF/BT-GO composites exhibited higher dielectric constant compared to PVDF/BT and PVDF/GO composites. Co-NWs, which were synthesized by electrodeposition, exhibited saturation magnetization (M-s) of 40 emu/g and coercivity (Hc) of 300 G. Three phase hybrid composites were prepared by mixing CNTs with either BT-GO or Co-NWs in PVDF by solution blending. These nanoparticles showed high electrical conductivity and significant attenuation of EM radiations both in the X-band and in the Ku-band frequency. In addition, BT-GO/CNT and Co-NWs/CNT particles also enhanced the thermal conductivity of PVDF by ca. 8.7- and 9.3-fold in striking contrast to neat PVDF. This study open new avenues to design flexible and lightweight electromagnetic interference shielding materials by careful selection of functional nanoparticles

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nature of interaction between a heteronucleating agent (graphene oxide, GO) and a strongly polar macromolecule (poly(ethylenimine), PEI) with poly(vinylidene fluoride) (PVDF) influencing the crystalline structure and morphology has been systematically investigated in this work. PEI interacts with PVDF via ion-dipole interaction, which helps in lowering the free energy barrier for nucleation thereby promoting faster crystallization. In contrast, besides interacting with PVDF, GO also promotes heteronucleation in PVDF. We observed that both GO and PEI have very different effects on the overall crystalline morphology of PVDF. For instance, the neat PVDF showed a mixture of both alpha and beta phases when cooled from the melt. However, incorporation of 0.1 wt % GO resulted in phase transformation from the stable alpha-phase to polar beta-polymorph in PVDF. In contrast, PEI, which also resulted in faster crystallization in PVDF predominantly, resulted in the stable alpha- phase. Various techniques like Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry were employed to confirm the phase transformations in PVDF. PEI was further grafted onto GO nanosheets to understand the combined effects of both GO and PEI on the polymorphism in PVDF. The PVDF/PEI-GO composite showed a mixture of phases, predominantly rich in a. These phenomenal effects were further analyzed and corroborated with the specific interaction between GO and PEI with PVDF using X-ray photon scattering (XPS) and NMR. In addition, the dielectric permittivity increased significantly in the presence of GO and PEI in the composites. For instance, PVDF/PEI-GO showed the highest permittivity of 39 at 100 Hz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compatibilized blends of poly(vinylidene fluoride) (PVDF) and thermoplastic polyurethane (TPU) were developed using maleated PVDF (PVDF-g-MA). Excellent compatibilization between PVDF and TPU was demonstrated by theological, morphological, and mechanical measurements. The introduction of PVDF-g-MA into the PVDF/TPU blends caused an increase in viscosity and storage modulus. Much finer morphology was clearly observed by SEM. The tensile tests showed that the tensile strength and ultimate elongation achieved a significant improvement with addition of PVDF-g-MA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new blend system consisting of an amorphous sulfonated poly[bis(benzimidazobenzisoquinolinones)] (SPBIBI) and the semi-crystalline poly(vinylidene fluoride) (PVDF) was prepared for proton exchange membranes. The miscibility behavior of a series of blends of SPBIBI with PVDF at various weight ratios was studied by WXRD, DSC and FTIR. The properties of the blend membranes were investigated, and it was found that the introduction of PVDF in the SPBIBI matrix altered the morphological structure of the blend membranes, which led to the formation of improved connectivity channels. For instance, the conductivity of the blend membrane containing 10 wt% PVDF displayed the highest proton conductivity (i.e., 0.086 S cm(-1)) at room temperature, a value almost twofold that of the pristine SPBIBI membranes (i.e., 0.054S cm(-1)) under identical conditions.